

Design and Construction of a Flow Equalization Basin to Optimize Performance of Everglades Stormwater Treatment Areas

April 22, 2015

Background

57,000 Acres of STA Built and Operational in 2010

- Treatment for Total Phosphorus Loading (TPL) Urban and Agricultural Areas
- TPL Reduction 170ppb to as low as 12ppb
- Stormwater Runoff (Pulse Flows) Reduce Water Treatment Effectiveness
 - Reduced Treatment Time
 - Soil Degradation
 - Damage to Vegetation

Restoration Strategies

2012 SFWMD Started Implementing Restoration Strategies Program

- Optimize Existing Water Quality Infrastructure
- Suite of Additional Water Quality Projects
- Address Pulse Flow Issues and Reduce TPL to 10ppb
- Plan Included 6 Projects
 - 6,500 Acres of STA Expansion
 - 120,000 Acre-Feet of Additional Water Storage
 - Flow Equalization Basins (FEB)

Restoration Strategies

FEB Attenuation of Pulse Flows

- Optimized Hydropatterns
- Reduced Flow Volumes/Velocities
- Lower Peak TP Loading Rates
- Reduced STA Expansion
- STA Optimization
 - Cost Effective
 - Environmentally Preferable
 - Key Objective

System Layout

EAA A-1 FEB Objectives

Support STA-3/4 and STA 2/Compartment B

- Provide Flow Equalization
- Reduce Peak Loading
- Prevent STA Damage

Support the Long-Term 10 ppb TPL Objective

- Achieve Greater Periods of Treatment Time
- Increasing the Treatment Performance

Provide Additional Operational Flexibility

Design Considerations

Historical Inflows

- Canal Flows from S-2, S-7, and S-8 Water Basins
- Stormwater Runoff from Central Flow Path
- Direct Precipitation
- Predicted Outflows
 - Evapotranspiration
 - Seepage
 - STA Releases

Design Considerations

Existing Infrastructure

- Pump Stations G-370, G-372, G-434, G-435
- Water Control Structure G-373
- Power Supply
- Hwy 27
- Adjacent Farmland and Holey Land
- Negative Impacts to WQ
- Future Vegetative Conditions

Value Engineering

WATER MANYON TO ANY OF THE OWNER

Utilization of Previous Construction

- Existing Scraped Area
- Existing Seepage Canal
- Existing Agricultural Canals
- Utilization of Existing Materials
 - Seepage Canal Excavation Stockpiles
 - Sorted/Processed Material Stockpiles
- Solar Powered Gates
- Future Vegetative Conditions

FEB Overview

AND THE MANAGEMENT

- ➤ 13,500 Acres of Storage
- 54,000 Acre-Feet Temporary Storage
- Uniform North-South Flow
- 2 Inflow Structures
- > 11 Outflow Structures
- 2 Bypass Structures
- 13 Miles of New Perimeter Levee
- 7 Miles of New Above Ground Inflow Channels

INFLOW OPERATIONS

Inflow from G-372> 2,775 cfs to G-720

925 cfs to STA-3/4

Inflow from G-370

- ➤ 1,850 cfs to G-721
- ➢ 925 cfs to STA-3/4

TuFlow Model

- 3-Bay Reinforced Concrete Gated Spillway
- 11' x 20' Vertical Lift Roller Gates

G-720 Layout

- Remote Telemetry SCADA
 Control
- Commercial Electric Power
- Portable Backup
 Generator

- 2 Bay Reinforced
 Concrete Gate Spillway
- 10' x 20' Vertical Lift Roller Gate

G-721 Layout

- Remote Telemetry
 SCADA Control
- Commercial Electric
 Power
- Backup Power Supplied from G-370

OUTFLOW OPERATIONS

G-722W and G-722

- G-722W Bypass G-721 Inflow Channel
- ➢ G-722 Release to NNRC.
- Max Outflow = 2,000 cfs

G-723

- Outflow Canal Bypass
 Seepage Collection
- Outflow Canal Low Flows
- Max Outflow = 225 cfs

G-724 (A-J)

- Gravity Flow Discharge to STA-3/4 Inflow Canal
- Max Outflow = 2,000 cfs

WATER CONTROL STRUCTURE – G-722W

- 3 Barrel Reinforced Concrete Box Culvert
- ➢ 10' x 10' x 600'
- Non-gated Culvert
 Structure

- 3 Barrel Reinforced
 Concrete Gate Culvert
- 10 Feet Tall; 10 Feet Wide; 31 Feet Long
- Stem Operated Vertical Lift Slide Gates

G-722 Layout

- Remote Telemetry SCADA Control
- Commercial Electric
 Power
- Backup Power Supplied from G-370

WATER CONTROL STRUCTURE G-723 N & S

- Single Barrel Reinforced Concrete Gate Culvert
- ➢ 7.5' x 7.5' x 460'
- 2 Stem Operated Vertical Lift Slide Gates

- Remote Telemetry SCADA Control
- Commercial ElectricPower
- Backup Power Supplied from G-370

WATER CONTROL STRUCTURE G-723 N & S

WATER CONTROL STRUCTURE 724A-J

- 1 Barrel Reinforced Concrete Gate Culvert
- 6' x 6' Rubicon Vertical Lift Aluminum Slide Gates

Typical Stem Slide Gate

- Remote Telemetry SCADA Control
- Solar Charged Battery Power
- Manual or Portable
 Generator Backup

WATER CONTROL STRUCTURE – 724 (A-J)

Anticipated Impact

	DRY YEAR -	WET YEAR -
	<u>2007</u>	<u>2008</u>
UNITS	Acre-ft	Acre-ft
Total Volume Captured by FEB/STA-3/4 System	158,075	472,577
Total Volume of Diversions	0	33,848
Net Inflow to FEB (G-720 and G-721)	38,000	133,204
Total Outflow through G-722	24,606	90,767
Total outflows through G-724 (A-J)	0	20,275
Note: -Modeling based on inflows to STA-3/4 at 1,000cfs below and 2,000cfs above a NFSL of 1 feet NAVD 88.		

-Results provided by NOVA Consulting.

Anticipated Impact

<u>DRY YEAR – 2007</u>

- Modeled FEB Attenuated 24% of all Miami and NNR Canal Inflows.
- 100% of Inflows Handled by FEB/STA-3/4 System

<u>WET YEAR – 2008</u>

- Modeled FEB Attenuated 26% of all Miami and NNR Canal Inflows.
- 93% of Inflows Handled by FEB/STA-3/4 System
- ➢ G-724 A-J Utilized to Convey 18% of FEB Releases to STA-3/4.

PROJECT TEAM

Owner/Operator

LEAD DESIGN

SUBCONSULTANTS

HILLERS ELECTRICAL ENGINEERING, INC.

Outside References

- Restoration Strategies Regional Water Quality Plan, South Florida Water Management District, April 2012.
- Science Plan for the Everglades Stormwater Treatment Areas, South Florida Water Management District, June 2013.

QUESTIONS...

